Ce graphique illustre bien comment un modèle est généré à partir de données brutes. Sagemaker permet de préparer les tâches d’apprentissage (via les notebooks), d’entrainer les modèles (jobs), puis d’étudier les modèles obtenus (models) et enfin de les déployer et d’obtenir une API pour les interroger (endpoint).
Dans un ensemble de données (data set), on sélectionne un panel d’images aléatoirement puis on l’entraine à reconnaitre les wafers conformes à ceux ayant des anomalies. Une intervention humaine peut être intégrée afin de trier les données ambiguës.
En cas de surentrainement, le modèle ne se réfère plus qu’à un produit spécifique et interprète toute déviation comme anomalie. Et à l’inverse, un modèle peu entrainé risque d’accepter des pièces souffrant de défauts mineurs comme des références. Le but est d’arriver à un équilibre entre entrainement (basé sur le data set) et capacité du modèle à déduire les défauts sur une pièce originale.
Une fois le modèle testé et validé, il est temps de le confronter aux lots d’images de wafers sortant des chaînes de production. La vérification est faite via une API créée également à partir de Sagemaker.